

High Glass Transition Lignin for Carbon Fiber Production

Xinfeng Xie, PhD

School of Forest Resources and Environmental Science

Michigan Tech

Oct. 12, 2017

Outline

- Introduction to Carbon fiber (properties, markets, and issues)
- High glass transition (Tg) lignin from directional liquefaction of biomass

Carbon fiber is strong and light

	Tensile Strength	Young's Modulus	Density
Carbon fiber	3500MPa	230GPa	1.78g/cm ³
Steel	600MPa	200GPa	7.87g/cm ³

Projections of global carbon fiber demand in the four major application areas (Das et al. 2016)

The production cost is >\$25/Kg (polyacrylonitrile, PAN based)

Production cost breakdown of PAN-based carbon fiber (Baker and Rials 2013)

Lignin is the most cost-effective raw material for CF

- From renewable resources (biomass)
- The second most abundant natural polymer in the world
- An industrial byproduct from current pulping processes and future biorefinary processes

Major issues

- Low strength and modulus
- Long thermal stabilization time

Schematic of carbon fiber production from an technical lignin (Baker and Rials 2013)

Lignin from directional liquefaction

	Tg (°C)	Cp (J/g°C)	Repeatability (W/g)
Willow	189.12	1.949	0.0198
Red Oak	183.86	2.474	0.0211
White Pine	189.72	1.823	0.0237
Miscanthus	192.86	1.777	0.0168

\mathbf{H}_{0}	P value
Species does not affect Tg	p = 0.309243
Species does not affect Cp	p = 0.667213
Liquefaction temperature does not affect Tg	p = 0.641602
Liquefaction temperature does not affect Cp	p = 0.461010
Drying in vacuum does not affect Cp	p = 0.002343

Thank you!

